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Learning

ostrated Demand for Al Talent

i.e., Deep Learning talent

“Of the ten most valuable quoted companies in the world,
seven say they have plans to put deep-learning-based Al at
the heart of their operations”

~The Economist (Feb. 17th, 2018)
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c ARTIFICIAL INTELLIGENCE

Funding (¢8)

Demand for Al Talent

i.e., Deep Learning talent
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i.e., Deep Learning talent

Unreasonable
Effectiveness of DL

Artificial intelligence revenue forecast by region, 2016-2025 ($bn)
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ostrated Demand for Al Talent

i.e., Deep Learning talent

According to JF Gagne’s [Global Al Talent Report 2018]:
© 22k Ph.D.-educated researchers globally
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i.e., Deep Learning talent

© 22k Ph.D.-educated researchers globally
® 3k of those currently looking

According to JF Gagne’s [Global Al Talent Report 2018]:
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Deep
Learning

ostrated Demand for Al Talent

i.e., Deep Learning talent

© 22k Ph.D.-educated researchers globally
® 3k of those currently looking
® 5k publishing / presenting at Al conferences

According to JF Gagne’s [Global Al Talent Report 2018]:
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Unreasonable
Effectiveness of DL

An Intro to Deep Learning

<«

C | ® nycdatascience.com/courses/deep-learning/

Syllabus

Unit 1: The Unreasonable Effectiveness of Deep Learning

* An Introduction to Neural Networks and Deep Learning

* Course Survey

 Interactive Visualization of an Artificial Neural Network

* Hardware Options for Deep Learning, including How to Build a Deep Learning Server
* Running a TensorFlow Jupyter Notebook within a Docker Container

« AShallow Artificial Neural Network

Unit 2: How Deep Learning Works

* Essential Theory I: Neural Units

 Interactive Visualization of Neural Units

« Essential Theory II: Cost Functions, Gradient Descent, and Backpropagation
* Interactive Visualization of a Deep Neural Network

* An Intermediate Neural Network

* Data Sets for Deep Learning

« Your Deep Learning Project: Ideating

init 2=

ino and Trainino a Nean | earnine Nahwnrl

NYCDATA SCIENCE
ACADEMY



Deep
Learning
lllustrated

Unreasonable
Effectiveness of DL

NYCDATA SCIENCE
ACADEMY



Deep
Learning
lllustrated

Biodiversity during the Phanerozoic
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N

Hubel & Wiesel (1959)

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Stimulus
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Neural response (spikes/sec)
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Hubel & Wiesel, 1968
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topographical mapping
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Visual Cortices

Parietal Lobe

LGN
Occipital Lobe

V3a (Motion)
V3 (Form)

V2 (Relays signals)

Temporal V1 (Catalogs Input)

Lobe ey ¥ VP (Relays signals)

V8

Extrastriate Cortex

Striate Cortex

Extrastriate Cortex
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Neocognitron
Fukushima (1980)

Input Layer 1 Layer 2 Layer 3
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LeCun, Boutou, Bengio & Haffner (1998)
|
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C1: feature maps
INPUT
o 6@28x28

whose weights are constrain

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
constrained to be identical



Deep
Learning
lllustrated

Unreasonable
Effectiveness of DL

LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)
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Viola & Jones (2001)
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ImageNet

mite

black widow
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tick
starfish
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ILSVRC: 1.4m, 1k object classes

Unreasonable
Effectiveness of DL

ILSVRC top-5 error on ImageNet

IMAGENET
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Krizhevsky, Sutskever & Hinton (2012)
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[TensorFlow Playground]
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http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=1&seed=0.17272&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
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Jupyter Notebooks

+ Docker + Nvidia GPU + TensorFlow

[Dockerfile]

[notebook server]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/Dockerfile-gpu
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Al Revolution

10 gofhmocy

[shallow notebook]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/shallow_net_in_keras.ipynb
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How DL Works

2: How Deep Learning Works
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Neural Units

How DL Works

Dendrites
/

Terminal Bulb
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Cost Functions, Gradient Descent, and
Backpropagation

How DL Works
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[intermediate notebook]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/intermediate_net_in_keras.ipynb
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© © ©® W pata Science Resources — Jo x

& C' @ Secure | https://www.jonkrohn.com/resources/
How DL Works

Open Data Sources

To train a powerful model, the larger the data set, the better -- if its well-organised and open, that's ideal. The
following repositories are standouts that meet all these criteria:

Data.gov (home of >150k US govemment-related datasets),

Goveode, a collection of government open source projects,

the Open Data Stack Exchange, and

\ 4 « this curated list of 'awesome' public datasets

this well-annotated list of data sets for natural language processing

Jon Krohn, Cajoler of Datums

for biomedical and health data specifically, check out:

o this University of Minnesota resource

Home )

o this Medical Data for Machine Learning GitHub repo
Resources
Posts For machine learning models that require a fot of labelled data, check out
Publications
Talks « UC Irvine's repository

« Yahoo's massive 13TB data set comprised of 100 billion user interactions with news items

Academia « Google's image and video data sets
Applications « Luke de Oliveira's Greatest Public Datasets for Al blog post
Quotations « CrowdFlower's Data for Everyone
Contact

Finally, here are extensive pages on importing data from the Web into R, provided by CRAN and MRAN.

NYCDATA SCIENCE
ACADEMY




Deep
Learning

lllustrated Your Deep Learnlng PI’OjeCt I
Ideating

NYCDATA SCIENCE
ACADEMY



Deep

Learning

lllustrated Outl | n e

@ Introductory Units

3: Building & Training a Deep Network
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Weight Initialization and Mini-Batches

Building Deep

[neurons notebook]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/first_tensorflow_neurons.ipynb

Deep

Learning

lusirated Essential Theory IV
Unstable Gradients and Avoiding Overfitting

Building Deep 10° ‘ Speed of Ie‘arning: 4 hisiden layers

—— Hidden layer 1

Hidden layer 2
107 Hidden layer 3 [
‘ ‘ ‘ Hidden layer 4

0 100 200 300 400 500
Number of epochs of training
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Building Deep

Essential Theory IV

Unstable Gradients and Avoiding Overfitting

Y
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[deep notebook]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/deep_net_in_keras.ipynb
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Building Deep

TensorBoard

and the Interpretation of Model Outputs

rd EVENTS IMAGES GRAPH  HISTOGRAMS

Regex filter X acecuracy

[ split on underscores accuracy

[ pata download links

Horizontal Axis
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L 0000 1000k 2000k 3000k 4000k
Runs
run/train
runi/validation cross entropy
fun2/train
run2/validation cross entropy
140
100
0600
0200
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® Intermediate Units
4: Machine Vision

Outline
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for Visual Recognition

Machine Vision

[deepvis]

NYCDATA SCIENCE
ACADEMY


http://viewpure.com/AgkfIQ4IGaM?start=0&end=0
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Classic ConvNet Architecture |

Machine Vision

[notebook] P


https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/lenet_in_keras.ipynb
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Classic ConvNet Architecture Il

Machine Vision
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/alexnet_in_keras.ipynb

Deep
Learning
lllustrated

Machine Vision

Transfer Learning

motor scooter

mite container ship motor scooter
black widow lifeboat go-kart Jaguar
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tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
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grille mushroom Madagascar cat
convertible agaric squirrel monkey
grille mushroom spider monkey
pickup jelly fungus elderberry titi
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Formulating
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A history of language technologies
Microsoft speech-recognition

Scientists from John Pierce’s highly Dawn of ‘common system reaches human parity
IBM and critical reporton task” method.
Georgetown language technologies Researchers share
demonstrate published. Funding data, agree on
alimited languishes for decades common methods  Goole releases neural-net machine
machrng— of evaluation translation for eight language pairs
gi?:;mn “2001: A Space Odyssey”
released Siri debuts on iPhone
Statistics-based version of
No US government Google Translate launched
research funding for
machine translation
or speech recognition
I
1954 60 1965 70 75 80 85 90 g 2000 05 10 16
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Translation method | Phrase-basedt | Neural-networkt | Human

A3 4 5 Perfect translation=6
Spanish | 1
English«EFrench I i
Chinese 1 1
Spanish — English | i
French —» English i i
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word2vec & Vector-Space Embedding

[vse 2000]

[word2viz]
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https://lamyiowce.github.io/word2viz/
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GRUs and LSTMs

[BILSTM notebook]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/stacked_bidirectional_lstm.ipynb

Deep
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[multi-ConvNet notebook]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/multi_convnet_architectures.ipynb
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TensorFlow

@® Advanced Units
7: TensorFlow

Outline
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A Comparison

Caffe Torch MXNet TensorFlow

Language Python, Matlab Lua, C Python, R, C++ Python, R, C++
Julia, Matlab C, Java, Go
JavaScript, Go

TensorFlow Scala, Perl

Programming Style Symbolic Imperative Imperative Symbolic

Parallel GPUs: Data

Parallel GPUs: Model

Pre-Trained Models Model Zoo ModelZoo Model Zoo github.com/tensorflow/
models

For RNNs

High-Level APIs PyTorch in-built Keras, TFLearn
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TensorFlow Graphs

0

NYCDATA SCIENCE
ACADEMY



Deep

Learning

ustrated Neurons in TensorFlow

[LeNet-5in TF]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/lenet_in_tensorflow.ipynb

Deep
Learning

lllustrated Outl | n e

DL with TensorFlow

@® Advanced Units

8: Deep Learning with TensorFlow
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[LeNet-5in TF]

DL with TensorFlow
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/lenet_in_tensorflow.ipynb
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© Xavier Glorot initialization
® problem simplification
@ layer architecture
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Improving Model Performance

© Xavier Glorot initialization
® problem simplification

@ layer architecture

@ cost function
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Improving Model Performance

© Xavier Glorot initialization
® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting
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© Xavier Glorot initialization
® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting

@ variable learning rate n
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Improving Model Performance

© Xavier Glorot initialization
® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting

@ variable learning rate n
@ epochs
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Improving Model Performance

© Xavier Glorot initialization

® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting

@ variable learning rate n

@ epochs

@ regularization parameters, e.g., A
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Improving Model Performance

© Xavier Glorot initialization

® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting

@ variable learning rate n

@ epochs

@ regularization parameters, e.g., A
©® mini-batch size

NYCDATA SCIENCE
ACADEMY



Deep
Learning
lllustrated

Improving Model Performance

© Xavier Glorot initialization

® problem simplification

@ layer architecture

@ cost function

@ avoid overfitting

@ variable learning rate n

@ epochs

@ regularization parameters, e.g., A
©® mini-batch size

@ grid-search automation
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..inlenet in keras.ipynb:

model = Sequential()

model.add(Conv2D(32, kernel size=(3, 3), activatioi

model.add(Conv2D(64, kernel size=(3, 3), activatiol
MaxPp ool _size=(2, 2)))

‘relu’, input_shape=(28, 28, 1)))
relu'))

DL with TensorFlow

..inlenet in tensorflow.ipynb:

# convolutional and max-pooling layers:
conv_1 = conv2d(square_x, weights['W_cl1'], biases['b_cl'])

# max pooling layer: : = )
conv_2 = conv2d(conv_1, weights['W_c2'], biases['b c2'])

Rool Size =
lmpilayeridropout = 0.25 |

ool 1 = tf.nn.dropout(pool 1, l-mp_dropout)
i GLED) B0 # dense layer:
adense flat = tf.reshape(pool 1, [-1, weights['W dl'].get_shape().as_list()[0]])

J1'1)

ldenseilayeridropout = 0.5 |

ense_dropout)

n.dropout (dense_1,
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Improving
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9: Generative Adversarial Networks
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Monet T Photos _ Zebras { Horses Summer T Winter

zebra —y horse

horse —» zebra

Cezanne

Photograph Van Gogh Ukiyo-e
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[Which Face is Real?]
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http://www.whichfaceisreal.com
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https://quickdraw.withgoogle.com/
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/generative_adversarial_network.ipynb
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https://www.youtube.com/watch?v=6kO4eZWeKOM
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https://www.youtube.com/watch?v=6kO4eZWeKOM
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https://www.youtube.com/watch?v=6kO4eZWeKOM
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[Deep Q-Learning Network notebook]
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https://github.com/the-deep-learners/TensorFlow-LiveLessons/blob/master/notebooks/cartpole_dqn.ipynb
https://kengz.gitbooks.io/slm-lab/content/
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@ data doubling every 18 months
® processing power cost halving every two years
® cheap sensors appearing everywhere

@ Deep Learning techniques refined in academia and in
Al Revolution industry, shared at light speed
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e March 16th

Al Revolution
See nycdatascience.com/courses/deep-learning

10% tuition discount with d1t2019
15% discount for NYCDSA Bootcampers
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