Survey
Introductory
Intermediate

TF Playgroupe

Hardware

Software

Shallow Net

The Unreasonable Effectiveness of Deep Learning

Deep Learning — Unit 1

Dr. Jon Krohn
jon@untapt.com

Slides available at jonkrohn.com/talks

July 21st, 2018

1 Name

Playground

Hardware

- Name
- 2 Relevant background, e.g., programming, stats, machine learning
- Interest in Deep Learning
- What you'd like to take away from this course

Playground

Hardware

- Name
- Relevant background, e.g., programming, stats, machine learning
- Interest in Deep Learning
- What you'd like to take away from this course

Hardware

- Name
- Relevant background, e.g., programming, stats, machine learning
- Interest in Deep Learning
- What you'd like to take away from this course

Shallow No

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

TF Playground

Hardware

Softwar

Shallow N

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey Introductory Units (1-3) Intermediate Units (4-6) Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
- 6 A Shallow Artificial Neural Network

TF Playground

i idiawai

Contival

Shallow No

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
- 6 A Shallow Artificial Neural Network

пагиwan

Sultwaii

Shallow No

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey Introductory Units (1-3) Intermediate Units (4-6) Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
- 6 A Shallow Artificial Neural Network

TF Playground

Hardware

Contwan

Shallow Ne

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey Introductory Units (1-3) Intermediate Units (4-6) Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

oonwa

Shallow N

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
- 6 A Shallow Artificial Neural Network

Playgroun

Talawait

.....a.

Shallow N

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

Course Survey

Introducto

TF

Playground

Hardware

Software

Shallow Net

Course Survey

Introductor Intermediat

1 F Playgroung

Hardware

Hubel & Wiesel (1959)

Survey
Introductory

। F Plavaround

Hardware

Software

Shallow Net

Hubel & Wiesel, 1968

Survey Introducto Intermedia

∓F Plavgroun

Hardware

Software

Shallow Net

Hubel & Wiesel, 1968

Survey

Introducto

∓F Plavgroun

Hardware

Software

Shallow Net

Neocognitron Fukushima (1980)

Unit 1

Introduction

Course Survey

Introductor Intermedia Advanced

∓F Plavgroun

Hardware

Software

Shallow Net

MNIST Digits & LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)

Course Survey

Introductory
Intermediat

TF

Hardware

Software

Shallow No

Viola & Jones (2001)

Introduction

miroduotioi

Introductor

TF

Playground

Hardware

Sollware

Shallow Net

Course Survey Introductory Intermediate

TF Playgroup

Hardware

Software

Shallow Ne

ImageNet

Fei-Fei Li et al. (2009), 14m images, 22k categories

gill fungus ffordshire bullterrier

currant

dead-man's-fingers

beach wagon

fire engine

indri

howler monkey

Survey
Introductory
Intermediate

Playground

Hardware

Software

Shallow N

ImageNet Classification Error

ILSVRC: 1.4m, 1k object classes

2010 2011 2012 2013 2014 2015

AlexNet

Krizhevsky, Sutskever & Hinton (2012)

Course Survey

Intermedial Advanced

Playground

Sonware

Shallow Net

I just sent them to you.

No plans yet.

I'm working on them.

Course Survey

Introductor Intermedial Advanced

Playground

Sollware

Shallow Net

Course Survey

Introductor Intermedial Advanced

Playground

Sollware

Shallow Net

Playgroun

Hardware

Softwa

Challau N

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 - Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
- 6 A Shallow Artificial Neural Network

Course Survey

Introductory
Intermediat

TF

Hardware

Software

← → C ① nycdatascience.com/courses/deep-learning/

Syllabus

Unit 1: The Unreasonable Effectiveness of Deep Learning

- An Introduction to Neural Networks and Deep Learning
- Course Survey
- · Interactive Visualization of an Artificial Neural Network
- Hardware Options for Deep Learning, including How to Build a Deep Learning Server
- Running a TensorFlow Jupyter Notebook within a Docker Container
- A Shallow Artificial Neural Network

Unit 2: How Deep Learning Works

- . Essential Theory I: Neural Units
- · Interactive Visualization of Neural Units
- Essential Theory II: Cost Functions, Gradient Descent, and Backpropagation
- · Interactive Visualization of a Deep Neural Network
- · An Intermediate Neural Network
- · Data Sets for Deep Learning
- Your Deep Learning Project: Ideating

Unit 3: Ruilding and Training a Deen Learning Network

TF Playgroun

Hardware

Softwar

Shallow N

- An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

Introductory

The Unreasonable Effectiveness of Deep Learning

Unit 1: right now!

Hardware Options for DL

Introduction

Introduction

Introductory

TF

Playgroun

~ "

Unit 1

Introduction

introduction

Introductory

Intermedia

TF

Hardware

Software

Shallow Net

Jupyter Notebooks

+ Docker + Nvidia GPU + TensorFlow

A Shallow Neural Network

Introduction

Survey
Introductory

тг Playground

Hardware

Software

Shallow Ne

How Deep Learning Works
Unit 2: This Afternoon

Course Survey Introductory

TF

Hardware

Software

Shallow N

04	1	9	2	Ì	3	1	4	3
≤ 3	6		7	$\boldsymbol{\mathcal{F}}$	8	6	9	ч
09	/	1	2	4	3	2	7	3
86	9	0	5	6	0	7	6	1
8 7	9	3	9	8	5	3	3	3
07	4	4	8	0	9	4	7	4
<i>4</i> 6	Ø	4	5	6	f	\bigcirc	0	1
21	6	3	0	2	1	1	1	ဗ
02	6	7	8	3	9	0	4	6
24	6	8	0	7	8	3	1	ヹ

Introductory

Essential Theory I Neural Units

Introductory

Essential Theory II

Cost Functions, Gradient Descent, and Backpropagation

An Intermediate Neural Network

Introduction

mtroduction

Introductory

TF

Hardware

~ ..

[intermediate notebook]

Data Sets for Deep Learning

Introduction

Course Survey Introductory Intermediate Advanced

TF Playground

Hardware

Shallaw Na

OHI	9	2	ì	3		4	3
5 3 6		7	2	8	6	9	ч
091	1	Z	4	3	2	7	3
8 6 9	0	5	6	0	7	6	1
8 7 9	3	9	8	5	9	3	3
074	9	8	0	9	4	7	4
4 6 8	4	5	6	I	\bigcirc	0	1
2 1 6	3	0	2	7	7	1	θ
026		8	3	9	0	4	6
7 4 6	8	0	7	8	3		7

Bluebell	
Tigerliiy	
Talip	
diswo	

Dataset	Classes	Train Samples
AG's News	4	120,000
Sogou News	5	450,000
DBPedia	14	560,000
Yelp Review Polarity	2	560,000
Yelp Review Full	5	650,000
Yahoo! Answers	10	1,400,000
Amazon Review Full	5	3,000,000
Amazon Review Polarity	2	3,600,000

Data Sets for Deep Learning

Introduction

Course Survey Introductory Intermediate Advanced

TF Playground

Hardware

Shallaw Na

OHI	9	2	ì	3		4	3
5 3 6		7	2	8	6	9	ч
091	1	Z	4	3	2	7	3
8 6 9	0	5	6	0	7	6	1
8 7 9	3	9	8	5	9	3	3
074	9	8	0	9	4	7	4
4 6 8	4	5	6	I	\bigcirc	0	1
2 1 6	3	0	2	7	7	1	θ
026		8	3	9	0	4	6
7 4 6	8	0	7	8	3		7

Bluebell	
Tigerliiy	
Talip	
diswo	

Dataset	Classes	Train Samples
AG's News	4	120,000
Sogou News	5	450,000
DBPedia	14	560,000
Yelp Review Polarity	2	560,000
Yelp Review Full	5	650,000
Yahoo! Answers	10	1,400,000
Amazon Review Full	5	3,000,000
Amazon Review Polarity	2	3,600,000

Data Sets for Deep Learning

Introduction

Course Survey Introductory Intermediate Advanced

TF Playground

Hardware

Shallaw Na

OHI	9	2	ì	3		4	3
5 3 6		7	2	8	6	9	ч
091	1	Z	4	3	2	7	3
8 6 9	0	5	6	0	7	6	1
8 7 9	3	9	8	5	9	3	3
074	9	8	0	9	4	7	4
4 6 8	4	5	6	I	\bigcirc	0	1
2 1 6	3	0	2	7	7	1	θ
026		8	3	9	0	4	6
7 4 6	8	0	7	8	3		7

Bluebell	
Tigerliiy	
Talip	
diswo	

Dataset	Classes	Train Samples
AG's News	4	120,000
Sogou News	5	450,000
DBPedia	14	560,000
Yelp Review Polarity	2	560,000
Yelp Review Full	5	650,000
Yahoo! Answers	10	1,400,000
Amazon Review Full	5	3,000,000
Amazon Review Polarity	2	3,600,000

Course Survey Introductory Intermediate Advanced

Playground

Hardware

0-4----

Jon Krohn, Cajoler of Datums

Home Resources

Posts Publications

Talks

Academia
Applications
Quotations
Contact

Open Data Sources

To train a powerful model, the larger the data set, the better -- if it's well-organised and open, that's ideal. The following repositories are standouts that meet all these criteria:

- Data.gov (home of >150k US government-related datasets),
- Govcode, a collection of government open source projects,
- the Open Data Stack Exchange, and
- · this curated list of 'awesome' public datasets
- this well-annotated list of data sets for natural language processing
- · for biomedical and health data specifically, check out:
 - this University of Minnesota resource
 - this Medical Data for Machine Learning GitHub repo

For machine learning models that require a lot of labelled data, check out:

- UC Irvine's repository
- · Yahoo's massive 13TB data set comprised of 100 billion user interactions with news items
- Google's image and video data sets
- · Luke de Oliveira's Greatest Public Datasets for Al blog post
- CrowdFlower's Data for Everyone

Finally, here are extensive pages on importing data from the Web into R, provided by CRAN and MRAN.

Unit 1

Introduction

Survey Introductory Intermediate

TF

Hardwar

Softwar

Shallow Net

Your Deep Learning Project I

Introductory

Building & Training a Deep Network

Unit 3: March 10th AM

Unit 1

Introductory

Essential Theory III

Weight Initialization and Mini-Batches

[neurons notebook]

Introductory

Essential Theory IV

Unstable Gradients and Avoiding Overfitting

Unit 1

Introduction

minoduction

Introductory

Intermedia

TF

Hardware

Software

Shallow Not

A Deep Neural Network

[deep notebook]

Course Survey Introductory Intermediate

TF Playground

Hardware

Software

Shallow Net

TensorBoard

and the Interpretation of Model Outputs

Introductory
Intermediate
Advanced

Playground

Hardware

Softwar

Shallow N

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

Introduction

Introductory
Intermediate

TF

Playground

Machine Vision

Unit 4: March 10th PM

Unit 1

Introduction

mtroduction

Introducto

Intermediate

TF

Hardware

Software

Shallow Net

Intro to ConvNets

for Visual Recognition

[deepvis]

Intermediate

LeNet-5

Intermediate

AlexNet Classic ConvNet Architecture II

[notebook]

Transfer Learning

Introduction

Survey Introductory Intermediate

Plavaround

Hardware

Software

Shallow N

Survey Introductory Intermediate

TF

Coffinian

Shallow Net

Your Deep Learning Project II Formulating

Introduction

Introductory

TF

Playground

Hardware

Software

Shallow Net

Natural Language Processing

Units 5 & 6: March 17th

Course Survey

Introductory Intermediate Advanced

Playground

Hardware

Software

troduction

A history of language technologies

- Scientists from IBM and Georgetown demonstrate a limited machinetranslation system
- John Pierce's highly critical report on language technologies published. Funding languishes for decades
 - "2001: A Space Odyssey"
- Dawn of "common task" method.
 Researchers share data, agree on common methods of evaluation.

Microsoft

Microsoft speech-recognition system reaches human parity

Google

Google releases neural-net machine translation for eight language pairs

Siri debuts on iPhone "Hey Siri"

Statistics-based version of Google Translate launched

Google

No US government

research funding for machine translation or speech recognition

introduction

Introductory
Intermediate

r Playground

Hardware

Software

Sunspring

Introduction

Course

Introductory Intermediate

Advanced

Playgroung

Hardware

Software

Shallow Ne

Course Survey

Intermediate

Playgrour

. . .

Software

Shallow Ne

Sunspring

He is standing in the stars and sitting on the floor. He hades a seat on the counters and guilz fine course, over 50 Mes back. He stars at it, we is on the phone, He cuts the shortum from the edge of the room and potat it in his mouth, He sees a black hole in the floor leading to the man on the roof. I know that it's a consequence. Whatever you want to know about the presence of the story, I'm a little bit of a boy on the floor. We see H pull a book from a shelf, flip through it while speaking, and then put it back. I don't know. I don't know what you're talking about. In a future with mass unemployment, young people are forced to sell blood. That's the first thins I can H I don't know. I just have to ask you to explain to me what you say. H12 What do you mean? He looks through the door and the door closes. He looks at the beg from his backpack, and starts to cry. No should see the boys and shat up. I was the one who was going to be a hundred years old. So what are you doing? Well, there's the situation with me and the light on the ship. The yoy mea trying to stop me. He was like a body and he was so that the same and the would have does it all me couldn't come any more. I didn't mean to be come any more. I didn't mean to be the same and the same case of the same case to the same case to take it out, it was a long time ago, He was a little H Decause I don't know what you're talking about. I don't want to be beneat with you. I saw him again. The way you were sent to me... that was a big honest idea. I am not a bright light. He looks at him for a moment, then omiles at him. That was all the time You don't have to be a doctor. I know that. Well, I have to go to the skull. I don't know. E2 I am not sure. I don't know what you're talking about. He picks up a light screen and fights the security force of the particles of a transmission on his face. I want to see you too. (angry)
It would be a good time. I think I could have been my life. What do you mean? He starts to shake. (smiles)
I don't know anything about any of this. H (CONT'D)
It may never be forgiven, but that
is just too bed. I have to leave,
but I'm not free of the world. H (to Mark, taking his eyes from his mouth) Then what? Yes. Perhaps I should take it from here. I'm not going to do something. If the principle is completely constructed for the same time. There's no answer. You can't afford to take this anywhere. It's not a dream. But I've got a good time to stay there. (smiling)
It was all about you to be true. (frowning)
We're going to see the money. Well, I think you can still be back on the table. Steps back. Coffey is still going through.

Introduction

Introducto

Intermediate

Playground

Talawait

Sollware

Shallow Net

Word Vectors

word2vec & Vector-Space Embedding

[vse 2000]

[word2viz]

Unit 1

Introduction

Introduction

Introducto

Intermedia

Playgroup

Hardware

Software

Ol- - II - - - - NI - 4

Recurrent Neural Networks GRUs and LSTMs

[BiLSTM notebook]

Unit 1

Introduction

minoduction

Introductor

Intermedia

TF

Software

Ol- - II - - - - NI - 4

Advanced Architectures

[multi-ConvNet notebook]

Intermediate

Your Deep Learning Project III **Improving**

Playgroun

Hardware

Softwar

Challau N

Outline

- An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

Introduction

Introductor

Introductor

Intermedia Advanced

TF

riayyrouri

Hardware

Software

Shallow Net

TensorFlow Unit 7 & 8: March 24th

Survey
Introductor
Intermedia
Advanced

Playground

Hardware

Software

Shallow N

Leading DL Libraries A Comparison

	Caffe	Torch	Theano	TensorFlow
language	Python, C++	Lua, PyTorch	Python	Python, Java, C, Go
pre-trained models	Model Zoo	ModelZoo	Lasagne	Inception, others
parallel GPUs: data	Yes	Yes	Yes	Yes
parallel GPUs: model		Yes		Yes
source code	Readable	Readable		
for RNNs			Good	Best
high-level APIs			Keras	Keras, TFLearn

Neurons in TensorFlow

Introduction

Course

Introducto

Intermedia

TF Playgrour

Hardware

Software

Ol- - II - - - - N - -

[LeNet-5 in TF]

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- epochs
- f 8 regularization parameters, e.g., λ
- mini-batch size
- grid-search automation

Survey
Introductory
Intermediate
Advanced

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- avoid overfitting
- **6** variable learning rate η
- epochs
- $oxed{8}$ regularization parameters, e.g., λ
- mini-batch size
- grid-search automation

Survey
Introductory
Intermediate
Advanced

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- epochs
- f 8 regularization parameters, e.g., λ
- 9 mini-batch size
- grid-search automation

Course

Introductory Intermediat Advanced

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- avoid overfitting
- **6** variable learning rate η
- epochs
- f 8 regularization parameters, e.g., λ
- 9 mini-batch size
- grid-search automation

Survey
Introductory
Intermediate
Advanced

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- epochs
- 8 regularization parameters, e.g., λ
- 9 mini-batch size
- grid-search automation

Survey
Introductory
Intermediate
Advanced

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- pepochs
- f 8 regularization parameters, e.g., λ
- 9 mini-batch size
- grid-search automation

Survey
Introductory
Intermediate
Advanced

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- epochs
- \odot regularization parameters, e.g., λ
- 9 mini-batch size
- grid-search automation

Survey
Introductory
Intermediate

rr Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- epochs
- $oldsymbol{8}$ regularization parameters, e.g., λ
- mini-batch size
- grid-search automation

Survey
Introductory
Intermediate
Advanced

Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- epochs
- 8 regularization parameters, e.g., λ
- 9 mini-batch size
- grid-search automation

Course Survey Introductory Intermediate

TF Playgroun

Hardware

Softwar

Shallow Ne

- Xavier Glorot initialization
- 2 problem simplification
- 3 layer architecture
- 4 cost function
- 6 avoid overfitting
- **6** variable learning rate η
- epochs
- 8 regularization parameters, e.g., λ
- mini-batch size
- grid-search automation

Course

Introductor Intermedia Advanced

Playgroung

Hardware

Software

Tuning Hyperparameters

...in lenet in keras.ipynb:

```
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(Dool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Dropout(0.25))
model.add(Dropout(0.25))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
```

...in lenet in tensorflow.ipynb:

```
# max pooling layer:
    convolutional and max-pooling layers:
    conv_l = conv2d(conv_l, weights['w_cl'], biases['b_cl'])
    conv_2 = conv2d(conv_l, weights['w_cl'], biases['b_cl'])
    conv2d(conv_l, weights['w_cl'], biases['b_cl'], biases['b_
```


مرملام رام معلما

Introduction

Introducto

Introductor Intermedia Advanced

TF

Literature.

Software

Shallow Ne

Your Deep Learning Project IV Assessing

Introduction

Introducto

Intermedia Advanced

TF

Hardware

Software

Shallow Net

Generative Adversarial Networks

Unit 9: April 7th AM

Course Survey Introductory Intermediate Advanced

TF Plavaround

Hardware

Software

Shallow N

Advanced

man man without glasses

woman without glasses

woman with glasses

Introduction

Course

Introductor

Intermedia Advanced

TF

Playground

Hardware

Software

Shallow Net

[Quick, Draw!]

Introduction

Course

Introductor

Advanced

Playgroun

Hardware

Software

Shallow Net

Introduction

minoductio

Introductor

Intermedia Advanced

TF

Playground

Hardware

Software

Shallow Net

[GAN notebook]

مرملام والمعالم

Introduction

Introducto

Advanced TE

Playgroung

Hardware

Software

Shallow Net

Deep Reinforcement Learning

Unit 10: April 7th PM

Introductio

Introductor

Advanced TF

Playground

i iaiuwaii

Software

Shallow Net

AlphaGO Silver et al. (2016)

Survey Introductor

Advanced
TF

Hardware

Software

Ob - II - - - NI -

Mnih et al. (2015)

[Atari Games]

Survey Introductor

Advanced
TF

Hardware

Software

Ob - II - - - NI -

Mnih et al. (2015)

[Atari Games]

Survey Introductor

Advanced TF

Coffwara

Mnih et al. (2015)

Introduction

Introductor

Intermediat Advanced

Playgroung

Hardware

Software

Shallow Net

[Deep Q-Learning Network notebook]

[SLM-Lab]

Advanced

Your Deep Learning Project V **Presentations**

Demand for AI Talent

i.e., Deep Learning talent

Introductory Intermediate Advanced

Playground

Hardware

Software

Ob - II - . . . N

"Of the ten most valuable quoted companies in the world, seven say they have plans to put deep-learning-based AI at the heart of their operations"

~ The Economist (Feb. 17th, 2018)

Advanced

Demand for Al Talent

i.e., Deep Learning talent

Advanced

Demand for AI Talent

i.e., Deep Learning talent

Demand for Al Talent

i.e., Deep Learning talent

According to JF Gagne's [Global Al Talent Report 2018]:

- 1 22k Ph.D.-educated researchers globally

introduction

Introductor Intermedia

Playground

Hardware

Software

Ohallau N

Demand for AI Talent

i.e., Deep Learning talent

According to JF Gagne's [Global Al Talent Report 2018]:

- 1 22k Ph.D.-educated researchers globally
- 2 3k of those currently looking
- 3 5k publishing / presenting at AI conferences

minoduction

Introductor Intermedia Advanced

Playground

Hardware

Software

Shallow N

Demand for AI Talent

i.e., Deep Learning talent

According to JF Gagne's [Global Al Talent Report 2018]:

- 1 22k Ph.D.-educated researchers globally
- 2 3k of those currently looking
- 3 5k publishing / presenting at Al conferences

Advanced

The Al Revolution

nava di catia a

Introduction

Introductor

Intermedia Advanced

TF

Hardward

Software

Shallow Net

The AI Revolution

Playground

Hardware

Sonwar

Shallow N

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

Introduction

Introduction

Introducto

TF Playground

Hardware

Software

Shallow Not

TensorFlow Playground

Interactive ANN Visualization

[TensorFlow Playground]

Software

Shallow N

Outline

- 1 An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
- 6 A Shallow Artificial Neural Network

Hardware Options for DL

incl. how to build a DL server

local machine

- eGPU
- (Tesla K80) cloud instance
- (GTX 1080ti) monster box

Hardware Options for DL

incl. how to build a DL server

- local machine
- eGPU
- (Tesla K80) cloud instance
- (GTX 1080ti) monster box

Hardware Options for DL

incl. how to build a DL server

- local machine
- eGPU
- (Tesla K80) cloud instance
- (GTX 1080ti) monster box

Hardware Options for DL

incl. how to build a DL server

- local machine
- eGPU
- (Tesla K80) cloud instance
- (GTX 1080ti) monster box

Survey Introductory Intermediat

TF

. ..., 5. - -..

Hardware

Software

Shallow Net

Local Machine

Introduction

Introducto

TF

Hardware

Software

Shallow Not

Remote Cloud Instance

[GCP Ubuntu Instance]

Build Your Own Monster Box

Introduction
Course
Survey

TF

Hardware

Software

Shallow Net

[PC Part Picker] [Blog Post]

Course

Introductor: Intermediat

TF

Playgroun

Hardware

Sollware

snallow ivet

Course

Introductor Intermediat

TF

Playgroung

Hardware

Software

. . . .

Course

Introductory Intermediate

TF

Playground

Hardware

Software

Shallow No

Introduction

Introductor

Intermedia Advanced

TF

i layground

Hardware

Software

Shallow N

Course

Intermediat

TF

Playground

Hardware

Software

Shallow Net

Course

Introductory

TF

Hardware

Software

Shallow Net

Playground

Hardware

Software

Shallow No

Outline

- An Introduction to Neural Networks and Deep Learning
- 2 Course Survey
 Introductory Units (1-3)
 Intermediate Units (4-6)
 Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
 - 6 A Shallow Artificial Neural Network

Introduction

introduction

Introducto

TF

Handman

Software

Shallow Not

Software Installation

How did everyone get on?

[installation instructions]

Software

Jupyter Notebooks + Docker + Nvidia GPU

[Dockerfile]

Software

Jupyter Notebooks

+ Docker + Nvidia GPU + TensorFlow

[Dockerfile]

Oontwai

Shallow Net

Outline

- An Introduction to Neural Networks and Deep Learning
- 2 Course Survey Introductory Units (1-3) Intermediate Units (4-6) Advanced Units (7-10)
- 3 Interactive Visualization of an Artificial Neural Network
- 4 Hardware Options for DL
- 5 TensorFlow Jupyter Notebooks within a Docker Container
- 6 A Shallow Artificial Neural Network

A Shallow Neural Network

Introduction

Survey

Introducto Intermedia Advanced

Playgroun

Hardwar

Software

Shallow Net

A Shallow Neural Network

Shallow Net

[shallow notebook]

